function [x,y,typ]=scifunc_block(job,arg1,arg2) //%Description // job=='plot' : block drawing // arg1 is block data structure // arg2 :unused // job=='getinputs' : return position and type of inputs ports // arg1 is block data structure // x : x coordinates of ports // x : y coordinates of ports // typ: type of ports // job=='getoutputs' : return position and type of outputs ports // arg1 is block data structure // x : x coordinates of ports // x : y coordinates of ports // typ: type of ports // job=='getorigin' : return block origin coordinates // x : x coordinates of block origin // x : y coordinates of block origin // job=='set' : block parameters acquisition // arg1 is block data structure // x is returned block data structure // job=='define' : corresponding block data structure initialisation // arg1: name of block parameters acquisition macro // x : block data structure //%Block data-structure definition // bl=list('Block',graphics,model,init,'standard_block') // graphics=list([xo,yo],[l,h],orient,label) // xo - x coordinate of block origin // yo - y coordinate of block origin // l - block width // h - block height // orient - boolean, specifies if block is tilded // label - string block label // model=list(eqns,#input,#output,#clk_input,#clk_output,state,.. // rpar,ipar,typ [,firing]) // eqns - function name (in string form if fortran routine) // #input - vector of input port sizes // #output - vector of ouput port sizes // #clk_input - vector of clock inputs port sizes // #clk_output - vector of clock output port sizes // state - vector (column) of initial condition // rpar - vector (column) of real parameters // ipar - vector (column) of integer parameters // typ - string: 'c' if block is continuous, 'd' if discrete // 'z' if zero-crossing. // firing - vector of initial ouput event firing times // // Copyright INRIA x=[];y=[];typ=[]; select job case 'plot' then standard_draw(arg1) case 'getinputs' then [x,y,typ]=standard_inputs(arg1) case 'getoutputs' then [x,y,typ]=standard_outputs(arg1) case 'getorigin' then [x,y]=standard_origin(arg1) case 'set' then needcompile=0 x=arg1 model=arg1.model;graphics=arg1.graphics; exprs=graphics.exprs if size(exprs(1),'*')==8 then exprs(1)(9)='0';end while %t do [ok,i,o,ci,co,xx,z,rpar,auto0,deptime,lab]=getvalue(.. ['Set scifunc_block parameters';'only regular blocks supported'],.. ['input ports sizes'; 'output port sizes'; 'input event ports sizes'; 'output events ports sizes'; 'initial continuous state'; 'initial discrete state'; 'System parameters vector'; 'initial firing vector (<0 for no firing)'; 'is block always active (0:no, 1:yes)' ],.. list('vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,.. 'vec',-1,'vec','sum(%4)','vec',1),exprs(1)) if ~ok then break,end exprs(1)=lab xx=xx(:);z=z(:);rpar=rpar(:) nrp=prod(size(rpar)) // create simulator i=int(i(:));ni=size(i,1); o=int(o(:));no=size(o,1); ci=int(ci(:));nci=size(ci,1); co=int(co(:));nco=size(co,1); [ok,tt,dep_ut]=genfunc1(exprs(2),i,o,nci,nco,size(xx,1),size(z,1),.. nrp,'c') dep_ut(2)=(1==deptime) if ~ok then break,end [model,graphics,ok]=check_io(model,graphics,i,o,ci,co) if ok then auto=auto0 model.state=xx model.dstate=z model.rpar=rpar if or(model.ipar<>tt) then needcompile=4,end model.ipar=tt model.firing=auto model.dep_ut=dep_ut x.model=model exprs(2)=tt graphics.exprs=exprs x.graphics=graphics break end end needcompile=resume(needcompile) case 'define' then in=1 out=1 clkin=[] clkout=[] x0=[] z0=[] typ='c' auto=[] rpar=[] model=scicos_model() model.sim=list('scifunc',3) model.in=in model.out=out model.evtin=clkin model.evtout=clkout model.state=x0 model.dstate=z0 model.rpar=rpar model.ipar=0 model.blocktype=typ model.firing=auto model.dep_ut=[%t %f] exprs=list([sci2exp(in);sci2exp(out);sci2exp(clkin);sci2exp(clkout); strcat(sci2exp(x0));strcat(sci2exp(z0)); strcat(sci2exp(rpar));sci2exp(auto)],.. list('y1=sin(u1)',' ',' ','y1=sin(u1)',' ',' ',' ')) gr_i=['xstringb(orig(1),orig(2),''Scifunc'',sz(1),sz(2),''fill'');'] x=standard_define([2 2],model,exprs,gr_i) end endfunction