function [x,y,typ]=VoltageSensor(job,arg1,arg2) // Copyright INRIA x=[];y=[];typ=[]; select job case 'plot' then standard_draw(arg1,%f,sensor_draw_ports) case 'getinputs' then [x,y,typ]=standard_inputs(arg1) case 'getoutputs' then [x,y,typ]=sensor_outputs(arg1) case 'getorigin' then [x,y]=standard_origin(arg1) case 'set' then x=arg1; case 'define' then model=scicos_model() model.in=1;model.out=[1; 1]; model.sim='VoltageSensor' model.blocktype='c' model.dep_ut=[%t %f] mo=modelica() mo.model='VoltageSensor' mo.inputs='p'; mo.outputs=['n';'v'] model.equations=mo exprs=[] gr_i=['xarc(orig(1)+sz(1)*1/8,orig(2)+sz(2)*4.3/5,sz(1)*3/4,sz(2)*3/4,0,360*64);'; 'xsegs(orig(1)+sz(1)*[0 1/8],orig(2)+sz(2)*[1/2 1/2],0)'; 'xsegs(orig(1)+sz(1)*[7/8 1],orig(2)+sz(2)*[1/2 1/2],0)'; 'xsegs(orig(1)+sz(1)*[1.5/8 2.5/8],orig(2)+sz(2)*[1.3/2 1.2/2],0)'; 'xsegs(orig(1)+sz(1)*[2.5/8 3.2/8],orig(2)+sz(2)*[1.62/2 1.3/2],0)'; 'xsegs(orig(1)+sz(1)*[1/2 1/2],orig(2)+sz(2)*[4.25/5 1.3/2],0)'; 'xsegs(orig(1)+sz(1)*[4.9/8 5.5/8],orig(2)+sz(2)*[1.3/2 1.65/2],0)'; 'xsegs(orig(1)+sz(1)*[5.5/8 6.5/8],orig(2)+sz(2)*[1.2/2 1.32/2],0)'; 'xsegs(orig(1)+sz(1)*[1/2 4.5/8],orig(2)+sz(2)*[1/2 1.32/2],0) '; 'xsegs(orig(1)+sz(1)*[1/2 1/2],orig(2)+sz(2)*[0.9/8 -1/8],0)'; 'xfarc(orig(1)+sz(1)*0.93/2,orig(2)+sz(2)*1/2,sz(1)*0.2/4,sz(2)*0.2/4,0,360*64);'; ' xx=orig(1)+sz(1)*4.2/8+[.9 1 0 .9]*sz(1)/12;'; 'yy=orig(2)+sz(2)*1.27/2+[0.1 1 0.3 0.1]*sz(2)/7;'; 'xfpoly(xx,yy);' 'xstring(orig(1)+sz(1)/2,orig(2)+sz(2)/5,''V'')'] x=standard_define([2 2],model,exprs,list(gr_i,0)) x.graphics.in_implicit=['I'] x.graphics.out_implicit=['I';'E'] end endfunction function sensor_draw_ports(o) [orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip) xset('pattern',default_color(0)) // draw input/output ports //------------------------ if orient then //standard orientation // set port shape out2=[ 0 -1 1 -1 1 1 0 1]*diag([xf/7,yf/14]) in2= [-1 -1 0 -1 0 1 -1 1]*diag([xf/7,yf/14]) dy=sz(2)/2 xset('pattern',default_color(1)) xpoly(out2(:,1)+(orig(1)+sz(1)),.. out2(:,2)+(orig(2)+sz(2)-dy),"lines",1) dy=sz(2)/2 xfpoly(in2(:,1)+orig(1),.. in2(:,2)+(orig(2)+sz(2)-dy),1) else //tilded orientation out2=[0 -1 -1 -1 -1 1 0 1]*diag([xf/7,yf/14]) in2= [1 -1 0 -1 0 1 1 1]*diag([xf/7,yf/14]) dy=sz(2)/2 xset('pattern',default_color(1)) xpoly(out2(:,1)+ones(4,1)*orig(1)-1,.. out2(:,2)+ones(4,1)*(orig(2)+sz(2)-dy),"lines",1) dy=sz(2)/2 xfpoly(in2(:,1)+ones(4,1)*(orig(1)+sz(1))+1,.. in2(:,2)+ones(4,1)*(orig(2)+sz(2)-dy),1) end // valve command port port //------------------------ // set port shape out= [-1 1 0 0 1 1 -1 1]*diag([xf/14,yf/7]) dx=sz(1)/2 xpoly(out(:,1)+ones(4,1)*(orig(1)+dx),.. out(:,2)+ones(4,1)*(orig(2)-sz(2)*2/8),"lines",1) endfunction function [x,y,typ]=sensor_outputs(o) // Copyright INRIA xf=60 yf=40 [orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip) //[orig,sz,orient]=o(2)(1:3); inp=size(o.model.in,1);clkinp=size(o.model.evtin,1); if orient then x1=orig(1)+sz(1) dx1=-xf/7 x2=orig(1) dx2=xf/7 else x1=orig(1) dx1=yf/7 x2=orig(1)+sz(1) dx2=-xf/7 end y=[orig(2)+sz(2)-(sz(2)/2) ,orig(2)-sz(2)*2/8] x=[(x1+dx2) orig(1)+sz(1)/2] typ=[2 1] endfunction