Interfacing function
eng


Bache

File content


function [x,y,typ]=Bache(job,arg1,arg2)
// Copyright INRIA
// exemple d'un bloc implicit, 
//   -  sans entree ni sortie de conditionnement
//   -  avec une entree et une sortie de type implicit et de dimension 1
//   - avec un dialogue de saisie de parametre
x=[];y=[];typ=[];

select job
case 'plot' then
  standard_draw(arg1,%f,bache_draw_ports)
case 'getinputs' then
  [x,y,typ]=bache_inputs(arg1)
case 'getoutputs' then
  [x,y,typ]=bache_outputs(arg1)
case 'getorigin' then
  [x,y]=standard_origin(arg1)
case 'set' then
  x=arg1;
  graphics=arg1.graphics;exprs=graphics.exprs
  model=arg1.model;
  while %t do
    [ok,Patm,A,ze1,ze2,zs1,zs2,z0,T0,p_rho,exprs]=getvalue('Thermal-hydraulic tank parameters', ..
        ['Atmospheric pressure inside the tank: Patm (Pa)';..
         'Surface area of the tank: A (m2)';..
         'Altitude of the first input port: ze1 (m)';..
         'Altitude of the second input port: ze2 (m)';..
         'Altitude of the first output port: zs1 (m)';..
         'Altitude of the second output port: zs2 (m)';..
         'Initial fluid level in the tank: z0 (m)';..
         'Temperature of fluid in the tank: T0 (K)';..
         'Density of fluid: p_rho (kg/m3)'],..
         list('vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1),exprs)

    if ~ok then break,end
    model.rpar=[Patm;A;ze1;ze2;zs1;zs2;z0;T0;p_rho]
    model.equations.parameters(2)=list(Patm,A,ze1,ze2,zs1,zs2,z0,T0,p_rho)
    graphics.exprs=exprs
    x.graphics=graphics;x.model=model
    break
  end
case 'define' then
  in=2
  out=3
  model=scicos_model()
  model.in=[-(1:in)'];
  model.out=[-(1:out)'];
  Patm=1.013E5
  A=1
  ze1=40
  ze2=0
  zs1=40
  zs2=0
  z0=30
  T0=290
  p_rho=0
  model.rpar=[Patm;A;ze1;ze2;zs1;zs2;z0;T0;p_rho]
  model.sim='Bache'
  model.blocktype='c'
  model.dep_ut=[%t %f]

  mo=modelica()
    mo.model='Bache'
    mo.inputs=['Ce1' 'Ce2'];
    mo.outputs=['Cs1' 'Cs2' 'yNiveau'];
    mo.parameters=list(['Patm';'A';'ze1';'ze2';'zs1';'zs2';'z0';'T0';'p_rho'],[Patm;A;ze1;ze2;zs1;zs2;z0;T0;p_rho])
  model.equations=mo
  model.in=ones(size(mo.inputs,'*'),1)
  model.out=ones(size(mo.outputs,'*'),1)
  exprs=[string(Patm);string(A);string(ze1);string(ze2);string(zs1);string(zs2);string(z0);string(T0);string(p_rho)]
  gr_i=['xrects([orig(1);orig(2)+6*sz(2)/10;sz(1);6*sz(2)/10],scs_color(15))'
  				'xpoly(orig(1)+[0;0;10;10;0;0;10]*sz(1)/10,orig(2)+[6;0;0;10;10;6;6]*sz(2)/10)'];
//'xfpolys(orig(1)+[0;5;7;3;5;10;10;0;0]*sz(1)/10,orig(2)+[4;2;7;7;2;0;4;0;4]*sz(2)/10,scs_color(15))'
  x=standard_define([2 2],model,exprs,list(gr_i,0))
  x.graphics.in_implicit=['I';'I']
  x.graphics.out_implicit=['I';'I';'E']
end
endfunction


function [x,y,typ]=bache_inputs(o)
// Copyright INRIA
xf=60
yf=40
[orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip)
//[orig,sz,orient]=o(2)(1:3);
  inp=size(o.model.in,1);clkinp=size(o.model.evtin,1);

if orient then
  x1=orig(1)
  dx1=-xf/7
  x2=orig(1)+sz(1)
  dx2=xf/7
else
  x1=orig(1)+sz(1)
  dx1=yf/7
  x2=orig(1)
  dx2=-xf/7
end

//y=[orig(2)+sz(2)-(sz(2)/2) ,orig(2)+yf/7+sz(2)]
y=[orig(2)+8*sz(2)/10 ,orig(2)+2*sz(2)/10]
x=[(x1+dx1)  (x1+dx1)]
typ=[2 2]

endfunction

function [x,y,typ]=bache_outputs(o)
// Copyright INRIA
xf=60
yf=40
[orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip)
//[orig,sz,orient]=o(2)(1:3);
 out=size(o.model.out,1);clkout=size(o.model.evtout,1);
if orient then
  x1=orig(1)
  dx1=-xf/7
  x2=orig(1)+sz(1)
  dx2=xf/7
else
  x1=orig(1)+sz(1)
  dx1=yf/7
  x2=orig(1)
  dx2=-xf/7
end

y=[orig(2)+8*sz(2)/10 ,orig(2)+2*sz(2)/10 ,orig(2)+6*sz(2)/10]
x=[(x2+dx2) (x2+dx2) (x2+dx2)]
typ=[2 2 1]

endfunction

function bache_draw_ports(o)

  nin=size(o.model.in,1);

  inporttype=o.graphics.in_implicit
  //inporttype=ones(nin,1)
  //if size(o.model.in,2)>1 then inporttype=o.model.in(:,2),end
  //  
  nout=size(o.model.out,1);
  outporttype=o.graphics.out_implicit
  //outporttype=ones(nout,1)
  //if size(o.model.out,2)>1 then outporttype=o.model.out(:,2),end

  clkin=size(o.model.evtin,1);
  clkout=size(o.model.evtout,1);

[orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip)
    xset('pattern',default_color(0));

//xset('thickness',1)
  // draw input/output ports
  //------------------------

//if o.model.sim=='inimpl'  then pause, end
  if orient then  //standard orientation
    // set port shape
    out1=[ 0  -1
	   1   0
	   0   1
	   0  -1]*diag([xf/7,yf/14])
    
    in1= [-1  -1
	   0   0
	  -1   1
	  -1  -1]*diag([xf/7,yf/14])
    
    out2=[ 0  -1
	   1  -1
	   1   1
	   0   1]*diag([xf/7,yf/14])
    
    in2= [-1  -1
	   0  -1
	   0   1
	  -1   1]*diag([xf/7,yf/14])
    dy=sz(2)/(nout+1)
    xset('pattern',default_color(1))

    for k=1:nout
      if outporttype==[] then
        xfpoly(out1(:,1)+ones(4,1)*(orig(1)+sz(1)),..
        out1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1)
      else
        if outporttype(k) == 'E' then
          xfpoly(out1(:,1)+ones(4,1)*(orig(1)+sz(1)),..
	       	out1(:,2)+ones(4,1)*(orig(2)+6*sz(2)/10),1)
	      elseif outporttype(k)=='I' then
	        xpoly(out2(:,1)+ones(4,1)*(orig(1)+sz(1)),..
	        out2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),"lines",1)
	      end
	    end
	  end


    dy=sz(2)/(nin+1)
    for k=1:nin
      if inporttype==[] then
      		xfpoly(in1(:,1)+ones(4,1)*orig(1),..
      		in1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1)
      else
      		if inporttype(k)=='E' then
      				xfpoly(in1(:,1)+ones(4,1)*orig(1),..
      				in1(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1)
      		elseif inporttype(k)=='I' then
      		  xfpoly(in2(:,1)+ones(4,1)*orig(1),..
      		  in2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1)
      		end
      end
    end
    
  else //tilded orientation
      out1=[0  -1
	   -1   0
	    0   1
	    0  -1]*diag([xf/7,yf/14])
      
      in1= [1  -1
	    0   0
	    1   1
	    1  -1]*diag([xf/7,yf/14])
      
      out2=[0  -1
	   -1  -1
	   -1   1
	    0   1]*diag([xf/7,yf/14])
      
      in2= [1  -1
	    0  -1
	    0   1
	    1   1]*diag([xf/7,yf/14])

      
      dy=sz(2)/(nout+1)
      xset('pattern',default_color(1))
    for k=1:nout
      if outporttype==[] then
        xfpoly(out1(:,1)+ones(4,1)*orig(1)-1,..
        out1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1)
      else
        if outporttype(k)=='E' then
          xfpoly(out1(:,1)+ones(4,1)*orig(1)-1,..
          out1(:,2)+ones(4,1)*(orig(2)+6*sz(2)/10),1)
        elseif outporttype(k)=='I' then
          xpoly(out2(:,1)+ones(4,1)*orig(1)-1,..
          out2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),"lines",1)
        end
      end
    end
    
    dy=sz(2)/(nin+1)
    for k=1:nin
      if inporttype==[] then
        xfpoly(in1(:,1)+ones(4,1)*(orig(1)+sz(1))+1,..
        in1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1)
      else
        if inporttype(k)=='E' then
          xfpoly(in1(:,1)+ones(4,1)*(orig(1)+sz(1))+1,..
          in1(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1)
        elseif inporttype(k)=='I' then
          xfpoly(in2(:,1)+ones(4,1)*(orig(1)+sz(1))+1,..
          in2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1) 
        end
      end
    end
  end
  // draw input/output clock ports
  //------------------------
  // set port shape

  out= [-1  0
         0 -1
         1  0
        -1  0]*diag([xf/14,yf/7])


  in= [-1  1
        0  0
        1  1
       -1  1]*diag([xf/14,yf/7])


  dx=sz(1)/(clkout+1)
  xset('pattern',default_color(-1))
  for k=1:clkout
    xfpoly(out(:,1)+ones(4,1)*(orig(1)+k*dx),..
    out(:,2)+ones(4,1)*orig(2),1)
  end
  dx=sz(1)/(clkin+1)
  for k=1:clkin
    xfpoly(in(:,1)+ones(4,1)*(orig(1)+k*dx),..
    in(:,2)+ones(4,1)*(orig(2)+sz(2)),1)
  end
xset('pattern',default_color(0))
endfunction