function [x,y,typ]=Bache(job,arg1,arg2) // Copyright INRIA // exemple d'un bloc implicit, // - sans entree ni sortie de conditionnement // - avec une entree et une sortie de type implicit et de dimension 1 // - avec un dialogue de saisie de parametre x=[];y=[];typ=[]; select job case 'plot' then standard_draw(arg1,%f,bache_draw_ports) case 'getinputs' then [x,y,typ]=bache_inputs(arg1) case 'getoutputs' then [x,y,typ]=bache_outputs(arg1) case 'getorigin' then [x,y]=standard_origin(arg1) case 'set' then x=arg1; graphics=arg1.graphics;exprs=graphics.exprs model=arg1.model; while %t do [ok,Patm,A,ze1,ze2,zs1,zs2,z0,T0,p_rho,exprs]=getvalue('Thermal-hydraulic tank parameters', .. ['Atmospheric pressure inside the tank: Patm (Pa)';.. 'Surface area of the tank: A (m2)';.. 'Altitude of the first input port: ze1 (m)';.. 'Altitude of the second input port: ze2 (m)';.. 'Altitude of the first output port: zs1 (m)';.. 'Altitude of the second output port: zs2 (m)';.. 'Initial fluid level in the tank: z0 (m)';.. 'Temperature of fluid in the tank: T0 (K)';.. 'Density of fluid: p_rho (kg/m3)'],.. list('vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1,'vec',-1),exprs) if ~ok then break,end model.rpar=[Patm;A;ze1;ze2;zs1;zs2;z0;T0;p_rho] model.equations.parameters(2)=list(Patm,A,ze1,ze2,zs1,zs2,z0,T0,p_rho) graphics.exprs=exprs x.graphics=graphics;x.model=model break end case 'define' then in=2 out=3 model=scicos_model() model.in=[-(1:in)']; model.out=[-(1:out)']; Patm=1.013E5 A=1 ze1=40 ze2=0 zs1=40 zs2=0 z0=30 T0=290 p_rho=0 model.rpar=[Patm;A;ze1;ze2;zs1;zs2;z0;T0;p_rho] model.sim='Bache' model.blocktype='c' model.dep_ut=[%t %f] mo=modelica() mo.model='Bache' mo.inputs=['Ce1' 'Ce2']; mo.outputs=['Cs1' 'Cs2' 'yNiveau']; mo.parameters=list(['Patm';'A';'ze1';'ze2';'zs1';'zs2';'z0';'T0';'p_rho'],[Patm;A;ze1;ze2;zs1;zs2;z0;T0;p_rho]) model.equations=mo model.in=ones(size(mo.inputs,'*'),1) model.out=ones(size(mo.outputs,'*'),1) exprs=[string(Patm);string(A);string(ze1);string(ze2);string(zs1);string(zs2);string(z0);string(T0);string(p_rho)] gr_i=['xrects([orig(1);orig(2)+6*sz(2)/10;sz(1);6*sz(2)/10],scs_color(15))' 'xpoly(orig(1)+[0;0;10;10;0;0;10]*sz(1)/10,orig(2)+[6;0;0;10;10;6;6]*sz(2)/10)']; //'xfpolys(orig(1)+[0;5;7;3;5;10;10;0;0]*sz(1)/10,orig(2)+[4;2;7;7;2;0;4;0;4]*sz(2)/10,scs_color(15))' x=standard_define([2 2],model,exprs,list(gr_i,0)) x.graphics.in_implicit=['I';'I'] x.graphics.out_implicit=['I';'I';'E'] end endfunction function [x,y,typ]=bache_inputs(o) // Copyright INRIA xf=60 yf=40 [orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip) //[orig,sz,orient]=o(2)(1:3); inp=size(o.model.in,1);clkinp=size(o.model.evtin,1); if orient then x1=orig(1) dx1=-xf/7 x2=orig(1)+sz(1) dx2=xf/7 else x1=orig(1)+sz(1) dx1=yf/7 x2=orig(1) dx2=-xf/7 end //y=[orig(2)+sz(2)-(sz(2)/2) ,orig(2)+yf/7+sz(2)] y=[orig(2)+8*sz(2)/10 ,orig(2)+2*sz(2)/10] x=[(x1+dx1) (x1+dx1)] typ=[2 2] endfunction function [x,y,typ]=bache_outputs(o) // Copyright INRIA xf=60 yf=40 [orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip) //[orig,sz,orient]=o(2)(1:3); out=size(o.model.out,1);clkout=size(o.model.evtout,1); if orient then x1=orig(1) dx1=-xf/7 x2=orig(1)+sz(1) dx2=xf/7 else x1=orig(1)+sz(1) dx1=yf/7 x2=orig(1) dx2=-xf/7 end y=[orig(2)+8*sz(2)/10 ,orig(2)+2*sz(2)/10 ,orig(2)+6*sz(2)/10] x=[(x2+dx2) (x2+dx2) (x2+dx2)] typ=[2 2 1] endfunction function bache_draw_ports(o) nin=size(o.model.in,1); inporttype=o.graphics.in_implicit //inporttype=ones(nin,1) //if size(o.model.in,2)>1 then inporttype=o.model.in(:,2),end // nout=size(o.model.out,1); outporttype=o.graphics.out_implicit //outporttype=ones(nout,1) //if size(o.model.out,2)>1 then outporttype=o.model.out(:,2),end clkin=size(o.model.evtin,1); clkout=size(o.model.evtout,1); [orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip) xset('pattern',default_color(0)); //xset('thickness',1) // draw input/output ports //------------------------ //if o.model.sim=='inimpl' then pause, end if orient then //standard orientation // set port shape out1=[ 0 -1 1 0 0 1 0 -1]*diag([xf/7,yf/14]) in1= [-1 -1 0 0 -1 1 -1 -1]*diag([xf/7,yf/14]) out2=[ 0 -1 1 -1 1 1 0 1]*diag([xf/7,yf/14]) in2= [-1 -1 0 -1 0 1 -1 1]*diag([xf/7,yf/14]) dy=sz(2)/(nout+1) xset('pattern',default_color(1)) for k=1:nout if outporttype==[] then xfpoly(out1(:,1)+ones(4,1)*(orig(1)+sz(1)),.. out1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1) else if outporttype(k) == 'E' then xfpoly(out1(:,1)+ones(4,1)*(orig(1)+sz(1)),.. out1(:,2)+ones(4,1)*(orig(2)+6*sz(2)/10),1) elseif outporttype(k)=='I' then xpoly(out2(:,1)+ones(4,1)*(orig(1)+sz(1)),.. out2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),"lines",1) end end end dy=sz(2)/(nin+1) for k=1:nin if inporttype==[] then xfpoly(in1(:,1)+ones(4,1)*orig(1),.. in1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1) else if inporttype(k)=='E' then xfpoly(in1(:,1)+ones(4,1)*orig(1),.. in1(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1) elseif inporttype(k)=='I' then xfpoly(in2(:,1)+ones(4,1)*orig(1),.. in2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1) end end end else //tilded orientation out1=[0 -1 -1 0 0 1 0 -1]*diag([xf/7,yf/14]) in1= [1 -1 0 0 1 1 1 -1]*diag([xf/7,yf/14]) out2=[0 -1 -1 -1 -1 1 0 1]*diag([xf/7,yf/14]) in2= [1 -1 0 -1 0 1 1 1]*diag([xf/7,yf/14]) dy=sz(2)/(nout+1) xset('pattern',default_color(1)) for k=1:nout if outporttype==[] then xfpoly(out1(:,1)+ones(4,1)*orig(1)-1,.. out1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1) else if outporttype(k)=='E' then xfpoly(out1(:,1)+ones(4,1)*orig(1)-1,.. out1(:,2)+ones(4,1)*(orig(2)+6*sz(2)/10),1) elseif outporttype(k)=='I' then xpoly(out2(:,1)+ones(4,1)*orig(1)-1,.. out2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),"lines",1) end end end dy=sz(2)/(nin+1) for k=1:nin if inporttype==[] then xfpoly(in1(:,1)+ones(4,1)*(orig(1)+sz(1))+1,.. in1(:,2)+ones(4,1)*(orig(2)+sz(2)-dy*k),1) else if inporttype(k)=='E' then xfpoly(in1(:,1)+ones(4,1)*(orig(1)+sz(1))+1,.. in1(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1) elseif inporttype(k)=='I' then xfpoly(in2(:,1)+ones(4,1)*(orig(1)+sz(1))+1,.. in2(:,2)+ones(4,1)*(orig(2)+2*sz(2)/10*(3*k-2)),1) end end end end // draw input/output clock ports //------------------------ // set port shape out= [-1 0 0 -1 1 0 -1 0]*diag([xf/14,yf/7]) in= [-1 1 0 0 1 1 -1 1]*diag([xf/14,yf/7]) dx=sz(1)/(clkout+1) xset('pattern',default_color(-1)) for k=1:clkout xfpoly(out(:,1)+ones(4,1)*(orig(1)+k*dx),.. out(:,2)+ones(4,1)*orig(2),1) end dx=sz(1)/(clkin+1) for k=1:clkin xfpoly(in(:,1)+ones(4,1)*(orig(1)+k*dx),.. in(:,2)+ones(4,1)*(orig(2)+sz(2)),1) end xset('pattern',default_color(0)) endfunction