
Scicos extension for matrix data type

Alan Layec

Abstract— This paper presents recent advances concerning
the handling of matrix typed data in the current Scilab/Scicos
environment (Scilab 4.1.2). New functionnalities of editor, com-
piler, simulator, code generation and also some Scicos blocks are
detailled. Examples of a Kalman filter(matrix operations) and a
quasic-chaotic digital recursive filter(integer handling) are given
to provide an overview of possibilities of Scicos concerning that
extension.

I. I NTRODUCTION

Scicos is a toolbox included in Scientific software package
Scilab. It is dedicated to the modeling and the simulation
of hybrid dynamical systems, where components and sub-
systems can be both described with discrete and continuous
time. Developed since fifteen years, that modeler/simulator
is now composed of a consequent number of functionnalities
which have been progressively grafted during its evolution.
To only quote the most used of them, we can cite the
possibilites of :

• building systems with a block-diagram graphical editor,
• use of the modelica modeling language,
• simulation of explicit/implicit continuous-time systems

by the use of ODE/DAE solvers,
• zero crossing detection,
• use of discrete events to modeling multirate system,
• code generation.

Since its original version, Scicos was given with no par-
ticular tools (i.e. blocks) for matrix operations and natively
doesn’t handle integer numbers.

Matrix operations are intensively used in modeling and
simulation of dynamical systems. In a time domain simula-
tor, the most popular use of matrix operations is probably
the multiplication encountered in the computation of CLSS
(Continuous Linear State-space System) where parameters
are defined withA,B,C,D matrices. But they also find many
others applications such the Kalman filter where the covari-
ance matrix of prediction error must be integrated in time
domain. Integer numbers are not really used in general sys-
tems of nonlinear differential equation (for i.e. in mecanical,
electrical or thermohydraulic systems), because continuous-
time variables are almost always considered as real numbers
evolving during time. But they are in fact essential in systems
evolving in finite state machines. Indeed digital subsystems
such digital signal processor, ASIC (Application Specific
Integrated Circuit) and other FPGA (Field Programmables
Gates Array) chips are today very used in embedded control
systems and also in the wide field of radar and communi-
cation systems through SiP (System in Package) and SoC
(System on Chip). Although that digital subsystems are
most of them deterministic systems, they present hardware

nonlinearity because of the nature of the quantified discrete-
time variables and parameters. That nonlinearities are sources
of noise and sources of instabilities. For example, we can cite
the case school of the nonlinearity of an Analog to Digital
Converter which reports quantification noise to its output or
also the well know modulo behavior of adders or multipliers
encountered in Arithmetic Logic Unit that can involve quasi-
chaotic oscillation in discrete recursive systems.

To provide to the users of Scicos the possibilities to
design realistic models which take into account digital nature
of signals used in digital chips and to perform powerful
simulations with matrix operations, we have strongly im-
prove all parts of Scicos. This have been done to allow
the handling of typed matrix regular input/output port, states
and parameters. The section II gives a hierarchical overview
of Scicos by focussing on what was the limitations before
introduction of matrix data type. Section III discuss memory
management and signals classification allowed by matrix
data type. Then the section IV reports and details new
functionnalities provided by the current version of Scicos.
Section V deals with examples of application through the
linear continuous-time Kalman filter and an example of a
quasi-chaotic IIR (Infinite Impulse Response) filter designed
in a DSP with use of actual code generation. Finally section
VI presents some current and future work concerning matrix
data type and code generation and concludes that paper.

II. SCICOS OVERVIEW

A. Hierarchical view of Scicos

In a hierarchical and simple point of view, Scicos is
composed of two parts as shown in the figure 1.

SCICOS
CORE

SCICOS
BLOCKS

Editor

Compiler

Interface

%cpr

scsm

objs

*block Computational function

Interfacing function

SimulatorC
,F

O
R

T
R

A
N

S
C

IL
A

B

Fig. 1. Hierarchical view of Scicos

The left part, called here ”Scicos core”, is the part that
encloses the main functionnalities of Scicos that allows the
modeling and the simulation and the second named ”Scicos

blocks” can be understand as the user part of Scicos and will
be explored in details in the next two subsections.

Scicos core is composed of three main levels :
• an editor which allows to do one diagram in a graphi-

cal environnement that is composed of entities called
blocks. That blocks are together connected by links
with different colors and interact with the editor by the
interfacing functions.

• a compiler : in a first pass it realizes a flat model
of the diagram and in a second time it computes the
scheduling tables of models to be simulated, extracts all
informations contained in the diagram that must be used
for the simulation and also realizes others operations
such the automatic adjustment of the regular ports size.

• a simulator which use the informations provided by the
compiler to realize the scheduling call of computational
functions of models and ensures different tasks such the
computation of discrete and contiuous states, the zero
crossing detection, update of output date...

The graphical editor handles one Scilab list called ”scsm”
that encloses informations concerning the different objects
that are present in the diagram (blocks, links and text). For
blocks, this informations are various and stored in sublist
of scsm called scsm.objs. That mainly concerns graphical
informations and model properties. Graphical informations
are used to draw the blocks, to know and update the position
of blocks, and model properties are to inform the number
and the sizes of regular input/output port, the values of
parameters, the initial conditions of states and etc... Another
main Scilab list intensively used in the core of Scicos is the
%cpr list that encloses informations issued from the com-
piler. That informations are the only necessary ones needed
for the simulation. Moreover it exchanges in input/output
a part of its content with the simulator notally concerning
discrete and continuous states and also the output register
of blocks. Note that the simulator which is written in C
language only work with low level arrays (arrays issued from
C or fortran functions). So the simulator can’t directly work
with the Scilab list %cpr which is an object of higher level.
To do the traduction of %cpr it is then needed to call a Scilab
interfacing function (called ”scicosim” for the case of Scicos
simulator) that will do the extraction from the %cpr elements
to provide understandable working array to the simulator.
That interfacing function is used any time the user runs a
simulation.

B. Overview of a Scicos Basic Block

1) Block viewed in the graphical editor: In the graphical
editor, blocks are handled by the core of Scicos via one spe-
cific function written in Scilab language named interfacing
function. This one will ensures the coherence and the update
of the data contained in the sublist scsm.objs. This is done
interactively with the user for example when he moves the
block or when he opens the dialog box to edit parameters.
Let us recall that the blocks are together connected with
links of differents natures : red links are to model discrete
activation dates (events) and black links are to drive data flow

2

-1

-2

0

-2

-1

Fig. 2. Size of regular ports viewed in the editor

between blocks. The size of regular ports is parametrized via
the interfacing function by the field model.in and model.out.
In the original versions of Scicos for each input/output ports,
only one dimension was used to set the size of the port as
shown in the figure 2.

That size could also be negative or equal to zero. In fact
that means that in the editor, the user can define sizes of port
which are undetermined for the negative case or sizes which
are equal to the sum of all other sizes for the case equal to
zero. In Scicos when negative or zero sizes are used, this
is the compiler which will adjust the sizes by the use of
fixed-point algorithm : all links are scanned the ones after
the others and that several times while each sizes becomes
positive. In a first pass, when a negative size is met in input,
the compiler look the size of the source port linked to the
target port and automatically affect that size to size of the
target port if and only if it is positive. In a second pass,
when a regular ouput port size is negative then the compiler
look which size in input have the same negative value and
then affects the size that it have found in the first pass. If all
sizes with negatives values are solved then the compiler treats
the zero sizes and affects this ones by summing all positive
size in an unilateral manner in input or in output (where
the zero size is encountered). If the algorithm doesn’t solve
that problem, then the compiler asks to the user to explicitly
gives the sizes that it can’t found.

2) Block viewed by the simulator: When the size are
fully informed by positive values, the compiler build the
output state registers in the sublist %cpr.state.outtb. All
output states are initially set to zero. When the Scilab
interfacing function (scicosim) is called, it exchanges and
does the traduction of the data contained in that output
registers for the simulator. During the simulation when
blocks are called, the simulator provides a pointer to that
data in arguments of the computational function by way of
a C structure called ”*block”. That structure is composed
of various fields and notally with fields of integers/reals
parameters values and size, discrete/continuous registerstate
values and sizes, the number of event input,... and of course
the size (field insz[]/outsz[]), the number (nin/nout) and the
values (inptr[][]/outptr[][]) of regular ports. A block viewed
by the simulator (computational function) can be summarized
by the figure 3.

In the computational function, the regular ports were
detailled as arrays of double (real number) with only one
dimensions. We can note that the regular input port doesn’t
really exists. They must be understand as arrays pointing on
output registers of preceding blocks. These arrays can also

1
ny1

1

nynout

BASIC BLOCK

Discrete states register

Continuous states register

Event input

Output registers

Output events

Regular inputs

Real parameters

Integer parameters

Event output register

u11

u12

u1nu1

u1

uninnunin

ynoutnynout

ynout1

y1ny1

y11

y1

ynout
unin

unin1

Fig. 3. Basic block viewed by the simulator

be viewed as vector because of the only one dimension. Each
input/output have a first index that informs the port number
and a subindex for the element number in the vector. As each
element is a double, each vector taken ×8 bytes in memory,
with n the size (or the dimension) of the considered port.

III. S IGNALS MODELING PROBLEMATICS

That implementation of regular input/output ports allowed
in fact various modelings of signals encountered in many
fields of applications. For example in control, we typically
use formalism of vector of continuous-time state variables
to do time domain integration of nonlinear equation systems
and in digital signal processing, systems are described with
discrete linear equation systems. For both examples, vectors
of real number are able to store the data used in that systems.
Moreover we can understand that a matrix of complex
numbers of size [n,m] can be concatenated in a single vector
of real number of sizenxmx2, where first indices going from
1 to mxn can be used to store real part and indexes from
mxn+1 for imaginary part and a vector of integer numbers
can be stored in a vector of real numbers.

But this implicit encapsulation really increases the model-
ing work when functions of systems intensively use matrix
operation and when the systems are mixed-signals systems.
Indeed in a mixed-signal system, digital subsystems can use
quantified discrete signals (evolving inN) and nonlinear
handle continuous-time variable which are real or complex
signals (evolving inR or in C). As Scicos only saw vector
of double, the users didn’t have feedback of informations in
the level of editor concerning type of data driven by regular
port and were obliged to write somme additional lines of
code in computational functions, mainly composed of cast
operator and indices computation, to correctly handled the
data driven between blocks.

A. Advantages of typed data

Data type for regular input/ouput ports brings many be-
fenits for the modeling and simulation of hybrid dynamical

systems.
First the typing offers an optimal memory management.

Indeed it is always constraining to use oversized blocks of
memory because memory is primary ressource of computa-
tion units. This is notally the case of use of real numbers
(double) to represent integer number (int) because we use
eight times more memory for a simulation than it really
needs. Moreover in some monte carlo simulation of digital
communication systems, large vector of data composed of
thousands elements are used. For example if we consider
one vector of 8-bit coded thousand values, we need 8 Kb in
the case where port handle double typed data and only 1 Kb
if it use good data type (char).

In a second point of view, the typing allows easiest ways
to interface computational libraries[BLAS/LAPACK] in its
own models. Indeed the previous cited *block structure
matches very well to call by reference external functions
concerning computation of states and output registers. In
preceding version of Scicos, before calling a function which
used integer array in arguments, we were obliged to convert
double arrays in integer and even to sometimed do the back
convertion from integer to double array after the call of
external function. This reveals an overcost of work for people
who realize the computational function. If parameters, states
and input/output registers directly pointing on good data type
then the work of writing code is more easy because arrays
naturaly take their place in argument of C or Fortran external
function.

Finally if states, parameters and input/output registers
are detailled in integer arrays, implementation and code
generation for embedded systems with computational units
working with integer arithmetic can be now fully considered
as a functionnality of Scicos.

B. Advantages of a second dimension

Use of a second dimension also improve the work of
modeling and simulation.

First it does an explicit distinction between vectors and
matrices. Because of the lack of this dimension, Scicos
blocks was only detailled for vector-based operations and
most of matrix-based operations that we find in Scilab wasn’t
avialable.

Secondly, the explicit distinction between column-vector,
row-vector and matrix allows one essential aspect for the
modeling of mixed-signal system, the possibility to do a clas-
sification of signals issued from different sort of subsystems.

• In the control domain and more espescially in Scicos,
the signals are used with a particular formalism. It
combines for each sample one value but also one
date when the sample is produced. That signals are
called ”time-based signals”. The concept of vector is
then understand as state vector of a nonlinear equation
system explicitly dependant of time. A vector of sizem
correspond then tom state variables.

• In the digital processing domain, signals are frequently
issued from subsystems where they are sampled with
constant step. The value of the date is not take into

account and a simple index is used to locate the sample
in a normalized time scale. That signals are called
”sample-based” signals. Vector are then understand of
frame of sample containingn indices. In that case we
speak of ”frame-based” signals.

The modeling and the simulation of mixed-signal systems
use both control domain and digital signal processing. Before
the introduction of typed-data in Scicos, it was difficult to
confront one environment which worked by default with a
formalism issued from the control domain with all computa-
tional technics encountered in the digital signal processing.
Today users of Scicos can choose and mix different sort of
signals in a same diagram.

IV. CURRENT IMPLEMENTATION OF MATRIX TYPED DATA

To do the typing and the addition of a second dimension
for states, parameters and input/output registers, many im-
provments have been performed in the core of Scicos :

• The compiler have been updated concerning data type
but also modified to automatically add the second di-
mension to ensure the compatibility with one-dimension
blocks. The algorithm which adjusts the negative and
zero size have been extented to also support the second
dimension of regular input/output ports. At the level
of the compiled structure (%cpr list), output register of
blocks (outtb) is no more a vector of double[] but a list
of Scilab objects. A discrete state (oz) and a parameter
(opar) based on matrix typed data and have been added.

• The interfacing function (scicosim) have been entirely
rewritten in C language because it was written in Fortran
that didn’t allow to pass arrays of pointers to the
simulator needed to use arbitrary data type.

• The simulator have been locally modified. The fixed
point algorithm for output blocks (flag 6) used in the
initialization phase have been rewritten to support ma-
trix. Synchronous blocks of Scicos (if-then-else, event
select) have also been treated concerning that extension.
They can now use typed inputs to work.

At the editor level, a Scicos basic block can be then now
viewed as shown in the figure 4.

Interfacing function of block can now handle eight differ-
ent types of data which are : real numbers, complex numbers,
signed integer numbers and unsigned integer number (8-bits,
16-bits and 32-bits for both). Morevover the management of
negative and zero size by the compiler ensures coherence for
some matrix operations. For example, one transpose matrix
block will possess a regular input port with size [-1,-2] and
an ouput port with size [-2,-1]. One matrix multiplication

-2,-1 (int32)

0,2 (reall)2,3 (complex)

-1,-2 (int32)

Fig. 4. Regular ports viewed in the editor with two dimensions and type

1

ny1

my1

Input events

Ouput events

Output events register

Discrete states register

Continuous states register

Real parameters

Integer parameters

Regular inputs

BASIC BLOCK

Output registers
u11,1

u12,1

u1nu1,1

u1

unin

unin1,1

y11,1

y11,2

y1

y1ny1,my1

uninnunin,munin

Fig. 5. Basic block viewed by the simulator with new registers

block has two inputs with respective sizes [-1,-2], [-2,-3]and
therefore an output with size [-1,-3]. In interfacing functions,
the original field model.in and model.out remains unchanged
but new fields appears in the sublist model :

• model.in2/model.out2 to specify the second dimension
of input/output matrix,

• model.intyp/model.outyp for the type number of in-
put/output port (values between 1 and 8),

• model.odstate to store values of a matrix typed data of
discrete states,

• model.opar to store values of a matrix typed data of
parameters.

Improved registers provided by a computational function
of a basic block are shown in the figure 4. To preserve
compatibility with blocks that handle only one dimension for
regular input/output port, the second dimensions and the type
number have been contatenated in the fields insz[]/outsz[].
For example if a block have two inputs respectively defined
with a matrix of real numbers of size [2,3] and a matrix of
int32 numbers of size [1,5], the insz[] field is coded such as:

• first dimensions are stored in insz[0:nin-1] with
insz[0]=2, insz[1]=1,

• second dimensions are stored in insz[nin-1:2*nin-1]
with insz[2]=3, insz[3]=5,

• data-type number are stored in insz[2*nin:3*nin-1] with
insz[4]=10(real), insz[5]=84(int32).

The table I gives the correspondence of the data type
numbers for the interfacing function (model.intyp/outyp)and
for the computational function.

Finally in the computational function, the input/output
(inptr[][]/outptr[][]) of the *block structure are now C **void
type.

Scilab C
Number Type Number Type

1 real matrix 10 double
2 complex matrix 11 double
3 int32 matrix 84 long int
4 int16 matrix 82 short
5 int8 matrix 81 char
6 uint32 matrix 841 unsigned long int
7 uint16 matrix 812 unsigned short
8 uint8 matrix 812 unsigned char

TABLE I

DATA TYPE NUMBER FOR THE EDITOR LEVEL AND FOR THEC LEVEL

To simplify the code writing of computational function,
we also provide a set of C macros to handle the different
informations (size/type/pointers/values) usable by the matrix
data-type implementation. For example, a C computational
function skeleton (type 4) for a block with one 8-bits integer
matrix output port (char) and with a second complex number
matrix output port will be :

#include "Scicos_block4.h"
void mycomputfunc(Scicos_block *block,int flag)
{

/*varaible declaration*/
char *y;
double *y2_r;
double *y2_i;
int i,j,k;
int nout;
int ny[2],my[2];

/*get number of output ports*/
nout=block->nout;

if (flag==1) {
for (i=0;i<nout;i++) {
/*get size of output ports*/
ny[i]=GetOutPortRows(block,i+1);
my[i]=GetOutPortCols(block,i+1);

}

/*get pointer of the first ouput port*/
y=Getint8OutPortPtrs(block,1);

/*get pointers of the second ouput port*/
y2_r=GetRealOutPortPtrs(block,2); /*real part*/
y2_i=GetImagOutPortPtrs(block,2); /*imag part*/

...
}

V. EXAMPLE OF APPLICATIONS

Block diagram of a Kalman Filter

One could find many examples that would use the improv-
ments explained in the previous sections. The first example
that we have choose here is a realization of a Kalman filter to
demonstrate the modeling possibilities of Scicos concerning
matrix operation.

Consider the following linear continuous-time system

{

ẋ = Ax+Bu,

y = Cx,

wherex is a state variable vector, assimilable to a matrix
of size [n,1], u inputs vector assimilable to a matrix of size
[p,1], y the vector of outputs assimilable to matrix of size
[q,1],A a square matrix of constants of size [n,n], B a matrix

2 +
+
+
−

+

+

+

−

+

1

1

R^(−1)

1/s

1/s

2

B

A

A’

C

Q

A

C

MATMUL

MATMUL

MATMUL

MATTRAN MATMUL

MATMUL

MATMUL

P

AP

PA’

Cx

u
Bu

Ax

AP+PA’+Q−PC’R^(−1)P

−L=PC’R^(−1)

C’ PC’

x

y

MATRIX OPERATIONS

PC’R^(−1)CP

PC’R^(−1)C

−L(y−Cx)

Ax+Bu−L(y−Cx)

Fig. 6. Block diagram of the Kalman filter

of constants of size [n,p] andC a matrix of constants of size
[q,n]. For that system, the associated Kalman filter is written







˙̂x = Ax̂ +Bũ− L (t) (ỹ − Cx̂) ,

L = −PC
′

R−1,

Ṗ = AP + PA
′

+Q− PC
′

R−1CP.

with L a matrix of state variables of size [n,q], P a square
matrix of states variables of size [n,n] andR a square matrix
of constants of size [q,q]. Note that the resolution of that
filter needs various matrix operations such the addition, the
time-domain integration, the transposition, the multiplication
and the invertion. All of these operations have been then
implemented as basic blocks that users can find in the
standard palettes of Scicos. The resulting modeling by the
use of block diagram of the previous filter is given in
the figure 6 and simulation results concerning dynamical
computation of elements of theP matrix are shown in
the figure 7 for sizesn = 3, p = 1, q = 2 with A =
[−0.3, 3, 1; 0, 0, 2; 0, 0, 0], B = [1; 2; 3], C = [1, 1, 2; 0, 2, 3],
x(0) = [−2; 1; 2], P (0) = zeros(3, 3), R = [1, 0; 0, 1] and
Q = [10, 0, 0; 0, 10, 0; 0, 0, 10].

P[1,2]=3.1

P[1,1]=5.1

P[2,3]=P[3,2]=-1.7

P[2,2]=3.0

P[3,1]=P[1,3]=-1.8

0 5 10 15

-3

-2

-1

0

1

2

3

4

5

t

y

Fig. 7. P (t) matrix values of the simulated Kalman filter

