Scicos extension for matrix data type

Alan Layec

Abstract— This paper presents recent advances concerning nonlinearity because of the nature of the quantified diseret
the handling of matrix typed data in the current Scilab/Scios time variables and parameters. That nonlinearities aneesu
environment (Scilab 4.1.2). New functionnalities of editp com- of noise and sources of instabilities. For example, we c&n ci

piler, simulator, code generation and also some Scicos bk are th hool of th i itv of Analod to Digital
detailled. Examples of a Kalman filter(matrix operations) and a € case school of the nonfinearity or an Analog 1o Ligia

quasic-chaotic digital recursive filter(integer handling) are given ~ Converter which reports quantification noise to its output o
to provide an overview of possibilities of Scicos concerminthat also the well know modulo behavior of adders or multipliers

extension. encountered in Arithmetic Logic Unit that can involve quasi
chaotic oscillation in discrete recursive systems.

. . , . N To provide to the users of Scicos the possibilities to
Scicos is a toolbox included in Scientific software packaggejgn realistic models which take into account digitatinat

Scilab. _It is dedi_cated to the modeling and the simulatiog¢ signals used in digital chips and to perform powerful
of hybrid dynamical systems, Wh_ere components ano_l SUBnulations with matrix operations, we have strongly im-
systems can be both described with discrete and contmuobﬁ)ve all parts of Scicos. This have been done to allow
time. Developed since fifteen years, that modeler/simulatg, o handling of typed matrix regular input/output portesa
is now composed of a consequent number of functionnalitieg,§ harameters. The section Il gives a hierarchical overvie
which have been progressively grafted during its evolutionyt sejcos by focussing on what was the limitations before
To only quote the most used of them, we can cite tgyqqction of matrix data type. Section Il discuss megnor
possibilites of : management and signals classification allowed by matrix
« building systems with a block-diagram graphical editorgata type. Then the section IV reports and details new

I. INTRODUCTION

« use of the modelica modeling language, functionnalities provided by the current version of Scicos

o Simulation of epr|C|t/|mpI|CIt continuous-time systems Section V deals with examp|es of app"caﬁon through the
by the use of ODE/DAE solvers, linear continuous-time Kalman filter and an example of a

« zero crossing detection, quasi-chaotic IIR (Infinite Impulse Response) filter design

« use of discrete events to modeling multirate system, in a DSP with use of actual code generation. Finally section

« code generation. VI presents some current and future work concerning matrix

Since its original version, Scicos was given with no pareata type and code generation and concludes that paper.
ticular tools (i.e. blocks) for matrix operations and nalw
doesn’t handle integer numbers.

Matrix operations are intensively used in modeling and\. Hierarchical view of Scicos
simulation of dynamical systems. In a time domain simula- |, 5 hjerarchical and simple point of view, Scicos is

tor, the most popular use of matrix operations is prObablé‘omposed of two parts as shown in the figure 1.
the multiplication encountered in the computation of CLSS

Il. SCICOS OVERVIEW

(Continuous Linear State-space System) where parameters scicos scicos

are defined with4,B,C,D matrices. But they also find many CORE . BLOCKS
others applications such the Kalman filter where the covari- \ Editor | . obis [interfacing function
ance matrix of prediction error must be integrated in time < o ssm

domain. Integer numbers are not really used in general sys- :

tems of nonlinear differential equation (for i.e. in meaahj | Compiler |

electrical or thermohydraulic systems), because contisuo e
time variables are almost always considered as real numbers E U interface

evolving during time. But they are in fact essential in sgste &

evolving in finite state machines. Indeed digital subsystem Ty N

such digital signal processor, ASIC (Application Specific v | Simulator | \b@(f [Computational function
Integrated Circuit) and other FPGA (Field Programmables

Gates Array) chips are today very used in embedded control Fig. 1. Hierarchical view of Scicos

systems and also in the wide field of radar and communi-

cation systems through SiP (System in Package) and SoCThe left part, called here "Scicos core”, is the part that
(System on Chip). Although that digital subsystems arencloses the main functionnalities of Scicos that alloves th
most of them deterministic systems, they present hardwangodeling and the simulation and the second named "Scicos

blocks” can be understand as the user part of Scicos and will 2 o

be explored in details in the next two subsections. 1 2
Scicos core is composed of three main levels : — -
« an editor which allows to do one diagram in a graphi- 2 » > 1

cal environnement that is composed of entities called
blocks. That blocks are together connected by links
with different colors and interact with the editor by the
interfacing functions.

» & compiler : in a first pass it realizes a flat mOdeL)etween blocks. The size of regular ports is parametrizad vi

of the diagram and in a second time it computes thg ™. . . ;)
. . Ff1e interfacing function by the field model.in and model.out
scheduling tables of models to be simulated, extracts a}l

: . : . . the original versions of Scicos for each input/outputtpor
informations contained in the diagram that must be used ar ; P puttpo
only one dimension was used to set the size of the port as

for the simulation and also realizes others operationsh . :

. . ._shown in the figure 2.

such the automatic adjustment of the regular ports size. That si Id also b . | In f
« a simulator which use the informations provided by theh at size ;:]ou_ z?]so d'e neg:rj]atlve or equda f'_co ZEr0. nfact

compiler to realize the scheduling call of computationa'i a_t rr:]eans t dat Int € ed :{tor,;c} € user can define sizes o hp_orr]t
functions of models and ensures different tasks such tIW)h'C are undetermined for the negative case or sizes whic

computation of discrete and contiuous states, the zef® eqlualstq the Sﬁm of all qther SIZES for the case eq(;;alhtp
crossing detection, update of output date... zero. In Scicos when negative or zero sizes are used, this

. . . . is the compiler which will adjust the sizes by the use of
The graphical editor handles one Scilab list called “sts .. omprer \ . ad y
. ! : . . fixed-point algorithm : all links are scanned the ones after
that encloses informations concerning the different dbjec . : ;
the others and that several times while each sizes becomes

that are present in the diagram (blocks, links and text). For .. X . o T
ositive. In a first pass, when a negative size is met in input,

blocks, this informations are various and stored in subli . . .
;) . e compiler look the size of the source port linked to the
of scam called scan.objs. That mainly concerns graphical ; :)
target port and automatically affect that size to size of the

informations and model properties. Graphical mformamontarget port if and only if it is positive. In a second pass,

are used to draw the blocks, to know and update the positio o . ;
: . when a regular ouput port size is negative then the compiler
of blocks, and model properties are to inform the number . o .
ok which size in input have the same negative value and

and the sizes of regular inputfoutput port, the values Qﬁen affects the size that it have found in the first passlIf al

parameters, the initial conditions of states and etc...thero _. . . .
. . L, sizes with negatives values are solved then the compilatstre
main Scilab list intensively used in the core of Scicos is th . . : .
e zero sizes and affects this ones by summing all positive

%ocpr list that encloses informations issued from the com-ée in an unilateral manner in input or in output (where

X : . Si
piler. That informations are the only necessary ones needF,le zero size is encountered). If the algorithm doesn’tesolv

for the 5|mulat|on. 'V'OTeover |t_exchanges N mput/outpu hat problem, then the compiler asks to the user to explicitl
a part of its content with the simulator notally concernmqg.

Fig. 2. Size of regular ports viewed in the editor

. : gives the sizes that it can’t found.
discrete and continuous states and also the output register

of blocks. Note that the simulator which is written in ¢ 2) Block viewed by the smulator: When the size are

language only work with low level arrays (arrays issued fronfully informed by_ POS'“Ye values, Fhe compiler build the
C or fortran functions). So the simulator can't directly wor output state reglst_er§_ in the sublist %cpr.state.outtkb._ Al
with the Scilab list %cpr which is an object of higher |eve|_putput _states are mmglly _set .to Z€r0. When the Scilab
To do the traduction of %cpr it is then needed to call a Scilalterfacing function (scicosim) is called, it exchangesi an
interfacing function (called "scicosim” for the case of &g d0€S the traduction of the data contained in that output
simulator) that will do the extraction from the %cpr elenent€gisters for the simulator. During the simulation when

to provide understandable working array to the simulatoplo‘:k_S are called, the simulator pr_owdes a pomter to that
That interfacing function is used any time the user runs data in arguments of ,:[he coanputatlonal functlpn by way of
simulation. a C structure called "*block”. That structure is composed

of various fields and notally with fields of integers/reals

B. Overview of a Scicos Basic Block parameters values and size, discrete/continuous regisiter

1) Block viewed in the graphical editor: In the graphical Vvalues and sizes, the number of event input,... and of course
editor, blocks are handled by the core of Scicos via one spthe size (field insz[]/outsz[]), the number (nin/nout) ahe t
cific function written in Scilab language named interfacingzalues (inptr[J[l/outptr[][]) of regular ports. A block ewed
function. This one will ensures the coherence and the upddi¥ the simulator (computational function) can be summaiize
of the data contained in the sublist sosobjs. This is done by the figure 3.
interactively with the user for example when he moves the In the computational function, the regular ports were
block or when he opens the dialog box to edit parameterdetailled as arrays of double (real number) with only one
Let us recall that the blocks are together connected witlimensions. We can note that the regular input port doesn’t
links of differents natures : red links are to model discreteeally exists. They must be understand as arrays pointing on
activation dates (events) and black links are to drive data fl output registers of preceding blocks. These arrays can also

Event input

systems.
,,,,,,,,,,,,,, ‘{{ First the typing offers an optimal memory management.
,,,,,, | Output registers Indeed it is always constraining to use oversized blocks of
= - o . memory because memory is primary ressource of computa-
e — . tion units. This is notally the case of use of real numbers
T N (double) to represent integer number (int) because we use
-t AT eight times more memory for a simulation than it really
Regular inputs Ynout,] ! i ; . h
, . = needs. Moreover in some monte carlo simulation of digital
] i] [Continuous states registgr 54‘“ communication systems, large vector of data composed of
— win.,| [Discrete states register e | thousands elements are used. For example if we consider
””” ! l l l ot one vector of 8-bit coded thousand values, we need 8 Kb in
: ! the case where port handle double typed data and only 1 Kb
! ‘ Event output register ‘ I i
 SEEEEE S EEEEEEE if it use good data type (char).
b l l l BASIC BLOCK In a second point of view, the typing allows easiest ways
Real parameters | Output events to interface computational libraries[BLAS/LAPACK] in its
Integer parameters own models. Indeed the previous cited *block structure

matches very well to call by reference external functions
concerning computation of states and output registers. In
preceding version of Scicos, before calling a function Whic

be viewed as vector because of the only one dimension. EaéRd integer array in arguments, we were obliged to convert
input/output have a first index that informs the port numbefOuble arrays in integer and even to sometimed do the back
and a subindex for the element number in the vector. As ea€RNVertion from integer to double array after the call of
element is a double, each vector take:8 bytes in memory external function. This reveals an overcost of work for geop

with n the size (or the dimension) of the considered port. who realize the computational function. If parameterdgesta
and input/output registers directly pointing on good dgfzet

[1l. SIGNALS MODELING PROBLEMATICS then the work of writing code is more easy because arrays

That implementation of regular input/output ports allowedaturaly take their place in argument of C or Fortran externa
in fact various modelings of signals encountered in manfgnction.
fields of applications. For example in control, we typically Finally if states, parameters and input/output registers
use formalism of vector of continuous-time state variablegre detailled in integer arrays, implementation and code
to do time domain integration of nonlinear equation systenr@eneration for embedded systems with computational units
and in digital signal processing, systems are describell wiwvorking with integer arithmetic can be now fully considered
discrete linear equation systems. For both examples, rsect@s a functionnality of Scicos.
of real number are able to store the data used_ in that SySterB.s‘Advantages of a second dimension
Moreover we can understand that a matrix of complex)))
numbers of sizerf,m] can be concatenated in a single vector US€ Of @ second dimension also improve the work of
of real number of sizexmx2, where first indices going from Medeling and simulation.
1 to mxn can be used to store real part and indexes from First it does an explicit distinction between vectors and

mxn+1 for imaginary part and a vector of integer number§natrices. Because of the lack of this dimension, Scicos
can be stored in a vector of real numbers. blocks was only detailled for vector-based operations and

But this implicit encapsulation really increases the medefM0St of matrix-based operations that we find in Scilab wasn't

ing work when functions of systems intensively use matrivialable.

operation and when the systems are mixed-signals systems>€condly, the explicit distinction between column-vector

Indeed in a mixed-signal system, digital subsystems can u&V-vector and matrix allows one essential aspect for the
quantified discrete signals (evolving i) and nonlinear modeling of mixed-signal system, the possibility to do as€la

handle continuous-time variable which are real or compleXfication of signals issued from different sort of subsyse
signals (evolving inR or in C). As Scicos only saw vector e« In the control domain and more espescially in Scicos,
of double, the users didn’t have feedback of informations in ~ the signals are used with a particular formalism. It
the level of editor concerning type of data driven by regular ~ combines for each sample one value but also one
port and were obliged to write somme additional lines of ~ date when the sample is produced. That signals are
code in computational functions, mainly composed of cast called "time-based signals”. The concept of vector is
operator and indices computation, to correctly handled the then understand as state vector of a nonlinear equation

Fig. 3. Basic block viewed by the simulator

data driven between blocks. system explicitly dependant of time. A vector of size
correspond then te state variables.
A. Advantages of typed data « In the digital processing domain, signals are frequently
Data type for regular input/ouput ports brings many be- issued from subsystems where they are sampled with

fenits for the modeling and simulation of hybrid dynamical constant step. The value of the date is not take into

Input events

account and a simple index is used to locate the sample
in a normalized time scale. That signals are called

"sample-based” signals. Vector are then understand of -----—- | Output registert

frame of sample containing indices. In that case we —

speak of "frame-based” signals. = et ")

The modeling and the simulation of mixed-signal systems _ ' %’ o, i i
use both control domain and digital signal processing. Befo regular inputs s !
the introduction of typed-data in Scicos, it was difficult to—r—— .., Confinuous states registdr n,
confront one environment which worked by default with 3 [Discrete states registdr
formalism issued from the control domain with all computa- -
tional technics encountered in the digital signal processi l i i
. . . Output events register ‘

Today users of Scicos can choose and mix different sort of | = ——F7 —7 — |

signals in a same diagram. BASIC BLOCK

Ouput events

IV. CURRENT IMPLEMENTATION OF MATRIX TYPED DATA

To do the typing and the addition of a second dimension
for states, parameters and input/output registers, many im
provments have been performed in the core of Scicos :

o The compiler have been updated concerning data type

but also modified to automatically add the second diblock has two inputs with respective sizes [-1,-2], [-2a8H
mension to ensure the compatibility with one-dimensiog, o efore an output with size [-1,-3]. In interfacing fuioes,
blOCkS_' The algorithm which adjusts the negative ang,q original field model.in and model.out remains unchanged
zero size have been extented to also support the seco[gm new fields appears in the sublist model :

dimension of regular input/output ports. At the level
of the compiled structure (%cpr list), output register of
blocks (outtb) is no more a vector of double[] but a list
of Scilab objects. A discrete state (0z) and a parameter

Fig. 5. Basic block viewed by the simulator with new register

model.in2/model.out2 to specify the second dimension
of input/output matrix,
model.intyp/model.outyp for the type number of in-

(opar) based on matrix typed data and have been added?®
The interfacing function (scicosim) have been entirely
rewritten in C language because it was written in Fortran
that didn't allow to pass arrays of pointers to the
simulator needed to use arbitrary data type.

put/output port (values between 1 and 8),
model.odstate to store values of a matrix typed data of
discrete states,

model.opar to store values of a matrix typed data of

The simulator have been locally modified. The fixed parameters.

point algorithm for output blocks (flag 6) used in the

initialization phase have been rewritten to support ma- |mproved registers provided by a computational function
trix. Synchronous blocks of Scicos (if-then-else, everf @ bf%S!? b|0.Ck are shown in the figure 4-.T0 preserve
select) have also been treated concerning that extensié@mpatibility with blocks that handle only one dimension fo
They can now use typed inputs to work. regular input/output port, the second dimensions and the ty

At the editor level, a Scicos basic block can be then no\,'\}umber have been contatenated in the fields insz[J/outsz][].
viewed as shown in the figure 4 For example if a block have two inputs respectively defined

Interfacing function of block can now handle eight differ—WIth a matrix of refil numbers O_f Siz€ ,[2’3]_ and a matrix of
ent types of data which are : real numbers, complex numbe}e,t?’2 numbers of size [1,5], the insz[] field is coded such as:
signed integer numbers and unsigned integer number (8-bits
16-bits and 32-bits for both). Morevover the management of ¢
negative and zero size by the compiler ensures coherence for
some matrix operations. For example, one transpose matrixe
block will possess a regular input port with size [-1,-2] and
an ouput port with size [-2,-1]. One matrix multiplication

first dimensions are stored in
insz[0]=2, insz[1]=1,

second dimensions are stored in insz[nin-1:2*nin-1]
with insz[2]=3, insz[3]=5,

data-type number are stored in insz[2*nin:3*nin-1] with
insz[4]=10(real), insz[5]=84(int32).

insz[0:nin-1] with

23 (compley)| 0.2 (reall) The table | gives the correspondence of the data type
numbers for the interfacing function (model.intyp/outyapd
1.2 (int32) 21 (int32) for the computational function.
Sy

Finally in the computational function, the input/output
(inptr[][l/outptr[][]) of the *block structure are now C *¥oid
type.

Fig. 4. Regular ports viewed in the editor with two dimensi@nd type

Bu

B . E Ax+Bu-L(y-Cx)

Scilab C
Number Type Number Type
1 real matrix 10 double
2 complex matrix 11 double
3 int32 matrix 84 long int
! int16 matrix 82 short
5 int8 matrix 81 char
6 uint32 matrix 841 unsigned long int
7 uint16 matrix 812 unsigned short
8 uint8 matrix 812 unsigned char

TABLE |
DATA TYPE NUMBER FOR THE EDITOR LEVEL AND FOR THEC LEVEL

To simplify the code writing of computational function,
we also provide a set of C macros to handle the different
informations (S|ze/type[p0|nters/values? usable by tlatrix
data-type implementation. For example, a C computational
function skeleton (tyﬁe 4) for a block with one 8-bits intege
matrix output port (char) and with a second complex number
matrix output port will be :

#i ncl ude "Sci cos_bl ock4. h"
voi d myconput f unc(Sci cos_bl ock *bl ock,int flag)

/*var ai bl e decl arati onx/
char =*y;

doubl e *y2_r;

doubl e *y2 i;

int i,j,k;

int nout;

int ny[2], ny[2];

/ *get nunber of output ports*/
nout =bl ock- >nout ;

Lo

c WATVUL
I c F e ol

i
L
P

PCRA(-1)C

PC'RAN-1)CP |

MATRIX OPERATIONS

Fig. 6. Block diagram of the Kalman filter

of constants of sizer|,;p] and C' a matrix of constants of size
[¢,n]. For that system, the associated Kalman filter is written

= Ai+Bi—L(t)(j—Ci),
= —PC'R!,
= AP+ PA +Q—-PC'R'CP.

with L a matrix of state variables of size,f;], P a square
matrix of states variables of size ;] and R a square matrix

of constants of sizeg|g]. Note that the resolution of that

if (flag==1) {

for (i=0;i<nout;i++) {
/+get size of output portsx*/
ny[i]=Get Qut Port Rows(bl ock, i +1);
nmy[i]=Cet Qut Port Col s(bl ock, i +1);

filter needs various matrix operations such the additioa, th
time-domain integration, the transposition, the multiation

and the invertion. All of these operations have been then
implemented as basic blocks that users can find in the
standard palettes of Scicos. The resulting modeling by the

/+get pointer of the first ouput port=*/
y=Get i nt 8Qut Port Pt rs(bl ock, 1);

/+get pointers of the second ouput portx/
y2_r=Cet Real Qut Port Ptrs(bl ock, 2); /*real part*/
y2_i =Cet | magQut Port Ptrs(bl ock, 2); /*imag part*/

use of block diagram of the previous filter is given in
the figure 6 and simulation results concerning dynamical
computation of elements of thé& matrix are shown in
the figure 7 for sizesn = 3, p = 1, ¢ = 2 with A =

- [-0.3,3,1;0,0,2;0,0,0], B =[1;2;
} z(0) = [-2;1;2], P(0) = zeros(3,3), R

), C=1[1,1,2;0,2,3],
[1,0;0,1] and

Q = [10,0,0;0,10,0;0,0, 10].

V. EXAMPLE OF APPLICATIONS

Block diagram of a Kalman Filter

One could find many examples that would use the improv-
ments explained in the previous sections. The first example
that we have choose here is a realization of a Kalman filter to
demonstrate the modeling possibilities of Scicos conogrni
matrix operation.

Consider the following linear continuous-time system

iy z
y =
where z is a state variable vector, assimilable to a matrix
of size [n,1], v inputs vector assimilable to a matrix of size

[p,1], y the vector of outputs assimilable to matrix of size
[¢,1], A a square matrix of constants of sizer}], B a matrix

Az + Bu,
Cuz,

P[1,1]=5.1

P[2,2]=3.0

P[1,2]=3.1

P[2,3]=P[3,2]=-1.7

P[3,1]=P[1,3]=-1.8

T T
5 10 15

t

P(t) matrix values of the simulated Kalman filter

